Extrait des Mémoires de la Faculté des Sciences de l'Université de Vytautas le Grand volume XII fascicule 1. 1938.

A. JUCYS

METALIŠKAS KALIS

ON THE METALLIC POTASSIUM

Kaunas :-: Kooperatinės B-vės "Raidės" spaustuvė :-: 1938

A. JUCYS

METALIŠKAS KALIS

ON THE METALLIC POTASSIUM

Metališkas kalis

Įžanga

Elektroninė metalų teorija tobulėjo visai abstraktinėje formoje iki 1933 metų, kol E. Wigner'as ir F. Seitz'as rado būdą, pagal kurį galima apytikriai išspręsti atskirų metalų konstituciją. Pirmiausia jie savo metodą pritaikė natriui^{1/2'3} vartodami natrio ionui Prokofjew'o⁴ potencialinę funkciją.

Kadangi metaliniame gardelyje elektrinis potencialas svyruoja periodiškai (vietos atžvilgiu), todėl minėtieji mokslininkai tik ir teieško elektrono bangos funkcijos viename daugiasienyje, apribojančiame metalo ioną. Šitas daugiasienis pakeičiamas lygiatūriu rutuliu ir reikalaujama, kad rutulio paviršiaus taškuose valentingumo elektrono bangos funkcija ψ patenkintų sąlygą:

(1)
$$\left[\frac{\vartheta\psi}{\vartheta\tau}\right]_{r=r_s} = 0$$

Čia r_s yra minėtojo rutulio spindulys apskaičiuojamas iš lygybės:

(2)
$$\frac{4}{3} \pi r_s{}^3 = V,$$

kur V yra atominis tūris.

Metaliniame gardelyje ionai susigrupuoja taip, kad valentingumo (laisvojo) elektrono energija turėtų minimalinę reikšmę. Šito energijos minimumo ir jam atitinkamo r_s ieškojimas ir yra pagrindinis uždavinys tiriant metalų konstituciją Wigner'o ir Seitz'o metodu. Į Wigner'o ir Seitz'o vartotąjį Prokofjev'o potencialą, netiesioginėje formoje, įeina ir pamainų energija. Tačiau K. Fuchs'as⁵, tirdamas metališką varį, pamai-

^{1.} E. Wigner ir F. Seitz. Phys. Rev. 43, 804, 1933,

^{2.} E. Wigner ir F. Seitz. Phys, Rev. 46, 509, 1934.

³. E. Wigner Phys. Rev. 46, 1002, 1934.

^{4.} W. Prokofjew. ZS. f. Phys. 58, 255, 1929,

^{5.} K. Fuchs. Proc. Roy. Soc., A, 151, 585, 1935,

nų energiją įveda integruodamas ne Schrödinger'io, kaip tai darė pirmieji, bet Fock'o lygtį. Šita prasme modifikuotas Wigner'o ir Seitz'o metodas ir taikomas šitame darbe metališko kalio sublimacijos šilimai ir gardelio konstantai apskaičiuoti. Skaičiavimus atliekant pasirodė E. Gorin'o⁶ darbas, kuriame tirtas metališkas kalis taikant Wigner'o ir Seitz'o metodą originalinėje formoje, ypač artimai prisilaikant Seitz'o⁷ darbo, kuriame šis tiria metališką litį.

1 §. Fock'o lygtis valentingumo elektronui.

Fock'o⁸ lygtys gaunamos ieškant viso atomo energijos

(3)
$$W = \frac{\int \overline{\Psi} L \Psi d_{\tau}}{\int \overline{\Psi} \Psi d_{\tau}}$$

minimumo. Čia Ψ yra viso atomo bangos funkcija, o $\overline{\Psi}$ — sujungtinis kompleksinis dydis. L yra energijos operatorius, kuris atominėje vienetų sistemoje turi šį pavidalą:

(4)
$$\begin{cases} L = \sum_{k=1}^{N} H_{k} + \sum_{i>k=1}^{N} \frac{1}{r_{ik}} \\ H_{k} = -\frac{1}{2} \left(\frac{\vartheta^{2}}{\vartheta x_{k}} + \frac{\vartheta^{2}}{\vartheta y_{k}} + \frac{\vartheta^{2}}{\vartheta z_{k}} \right) - \frac{N}{r_{k}} \end{cases}$$

Čia N yra visų elektronų skaičius, $r_k - k$ -jo elektrono atstumas nuo branduolio, $r_{ik} - i$ -jo ir k-jo elektronų tarpusavis atstumas, o x_k , y_k , $z_k - k$ -jo elektrono koordinatos.

Bangos funkcija Ψ išreiškiama dvejopai. 1. vienu su N eilučių ir N stulpelių determinantu, kurio elementai yra pavienių elektronų bangų funkcijos, priklausančios nuo keturių (trijų svorio centro ir vienos sukinio) koordinatų. 2. dviejų determinantų sandauga, kurių vienas turi po p, o antras po q eilučių ir stulpelių. p reiškia elektronų skaičių su vienos krypties sukiniais, o q — su priešingos krypties sukiniais. Visuomet p+q=N. Šiuo atveju kiekvienas determinantų elementas yra pavienių elektronų bangų funkcijos, priklausančios nuo trijų koordinatų.

^{6.} E. Gorin. Phys. ZS. Sowjetunion, 9, 328, 1936.

^{7.} F. Seitz'as. Phys. Rev. 47, 400, 1935.

^{8.} V. Fock. ZS. f. Phys. 61, 126, 1930,

Buvo naudotas antras Ψ išreiškimo būdas. Kaliui N=19, todėl imta p=9 ir q=10. Kiekvienai bangos funkcijai patogiausia duoti šiokį pavidalą:

(5)
$$\psi_{\mathbf{k}} = \frac{1}{2\sqrt[n]{\pi}} \frac{P(\mathbf{n}l/\mathbf{r})}{\mathbf{r}} Y_{1} (\vartheta, \varphi)$$

Čia n yra vyriausias k-jo elektrono kvantų skaičius, o l — azimutinis kvantų skaičius. Rūtulinė funkcija Y yra normuojama šia sąlyga:

(6)
$$\int \int \overline{Y}_1 Y_1 \sin \vartheta d\vartheta d\varphi = 4\pi$$

P(n|r) = rR (R — radijinė bangos funkcija) tuomet normuojama šiaip:

(7)
$$\int P^2(nl/r)dr = 1$$

Ortogonališkumo sąlyga tuomet yra:

(8)
$$\int P(nl/r)P(n'l/r)dr = 0, \text{ jei } n \pm n'.$$

Energijos (3) išraiškoje pointegrinės tiekybės išreikštos per P(nl/r) originaliniu Fock/0⁹ metodu, kurį jis pritaiko natriui, turinčiam 11 elektronų. Šiuo atveju, dėl 2p ir 3p elektronų sąveiksmio, skaičiavimai truputį pasunkėja. Tokiu būdu išreikštai energijai W taikytas variacijos principas pagal Hartree¹⁰ schemą ir gautos 6 lygtys atitinkamai 1s, 2s, 2p, 3s, 3p ir 4s elektronams. Reikalinga tik paskutinė lygtis:

(9)
$$\left[\frac{d^2}{dt^2} + \frac{2Zp}{r} - 2\varepsilon\right] P(4s/r) + G(r) = 0$$

 \check{C} ia $\frac{Z_p}{T}$ reiškia potencialą atstume r nuo branduolio ir

(10)
$$Z_p = 19 - 2\sum_{n=1}^{3} Y_o(ns,ns/r) - 6\sum_{n=2}^{3} Y_o(np,np/r)$$

G(r) yra pamainų narys ir

. . . .

(11)

$$G(r) = \sum_{n=1}^{3} \left[\frac{2}{r} Y_{o}(ns,4s/r) - \varepsilon_{ns4s} \right] P(ns/r) + \frac{2}{r} \sum_{n=2}^{3} Y_{1}(np,4s/r) P(np/r)$$

9. V. Fock. ZS. f. Phys. 62, 795, 1930,

¹⁰. D. R. Hartree ir W. Hartree. Proc. Roy, Soc, A, 154, 588, 1936,

 $\epsilon_{ns4s}~$ yra Lagrange'o daugikliai, konstantos. O Y-kais yra pažymėti šitokie integralai:

$$Y_{k}(nl,n'l'/r) = Z_{k}(nl,n'l'/r) + r^{k+1} \int_{r,=r}^{\infty} P(nl/r') P(n'l'/r') \frac{dr'}{r'^{k+1}},$$

kur

(12)

(13)
$$Z_{k}(nl,n'l'/r) = \frac{1}{r^{k}} \int_{0}^{r} P(nl/r') P(n'l'/r') r'^{k} dr'$$

(9) — (13) lygybėse visi P yra normuoti pagal (7) sąlygą.

2 §. Fock'o lygties integravimas.

Bangos funkciją ψ išreiškus sulig (5), sąlyga (1) pasikeičia šiaip:

(14)
$$\left[\frac{\mathrm{d}P}{\mathrm{d}r}\right]_{r=r_{\mathrm{s}}} = \frac{P}{r_{\mathrm{s}}}$$

Skaičiuojant yra patogiau vartoti valentingumo elektrono bangos funkciją nenormuotą, o kitas — normuotas. Tuomet (9) lygtis patogiausia rašyti šitame pavidale:

(15)
$$\frac{d^2 P(4s/r)}{dr^2} + \left(E + \frac{2Z_p}{r}\right) P(4s/r) + K G(r) = 0$$

Čia

$$K = \sqrt{\int_{o}^{r_{s}} P^{2} (4s/r) dr},$$

o E = -2ε yra energija išreikšta Rydberg'o vienetais.

(15) lygtis integruota nuosakaus artėjimo metodu, vartojant kalio ionui Hartree¹¹ lauką. Pirmas artutinumas gautas G(r) prilyginant nuliui. Tuomet gaunama paprasta Schrödinger'io lygtis, kuri suintegruota taip, kaip Wigner'o ir Seitz'o¹ (jau cituota) darbe aprašyta. Iki r=0,02 at. v. integruota iteracijos metodu, o toliau paprastu radijinių lygčių integravimo metodu¹². Kaipo pradinė sąlyga vartota $\frac{dP(4s/r)}{dr} = 50$, kai

¹¹. D. R. Hartree. Proc. Roy. Soc. A, **143**, **506**, 1934.

¹². Žiūr. pav. E. M. Condon ir G. H. Shortley. The Theory of Atomic Spectra. Cambridge. 344 p. 1935.

r = 0. Intervalų padalinimas iki r = 0,1 at. v. vartotas toks pat, kaip Hartree lentelėse paduota, o toliau vartotas padvigubintas intervalų skaičius. 3 fig. I kreivė vaizduoja energijos E pareinamybę nuo r_s. Žemiausią energiją E=-0,396 Ry atitinka r =5,0 at. v. Šitai energijai atitinkančią elektrono bangos funkciją ($\frac{P}{r}$) vaizduoja 1 fig. brūkšnių kreivė. Šita bangos funkcija vartojama antrajam artutinumui gauti.

Kalio iono elektronų bangų funkcijos, kaipo Hartree lygčių sprendiniai, nėra ortogonalinės¹³. Taip pat ir gautoji P(4s/r)nėra ortogonalinė. Patogiau būtų iš pradžių bangų funkcijas ortogonalizuoti ir tuomet apskaičiuoti G(r). Tačiau šiuo atveju ortogonalizuotos bangų funkcijos nustotų buvusios atitinkamųjų lygčių sprendiniai. Todėl šiame darbe bangų funkcijos vartojamos tokios, kokios jos yra gaunamos sprendžiant atitinkamas lygtis.

Pamainų narį G(r) apskaičiuojant pirmiausia rasti Z-tai ir paskiau naudojantis iš (12) gauta lygtimi:

(17)
$$\frac{\mathrm{d}Y_k}{\mathrm{d}r} = \frac{(k+1)Y_k - (2k+1)Z_k}{r}$$

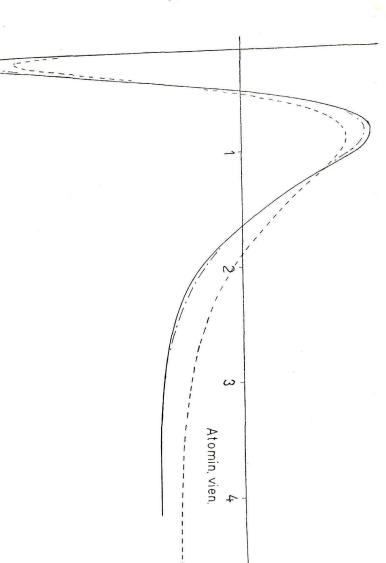
apskaičiuojami atitinkamieji Y-kai. (17) lygtį tenka integruoti atbulai nuo r=r_s (nes šiuo atveju ∞ pasikeičia į r_s) iki r=0 vartojant pradinę sąlygą:

(18)
$$Y_k = Z_k$$
, jei $r = r_s$.

Iš pradžių G(r) apskaičiuotas Lagrange'o daugiklius prilyginant nuliams. Tokiu būdu rastą G(r) vaizduoja 2 fig. brūkšnių kreivė (Žiūr. 109 psl.).

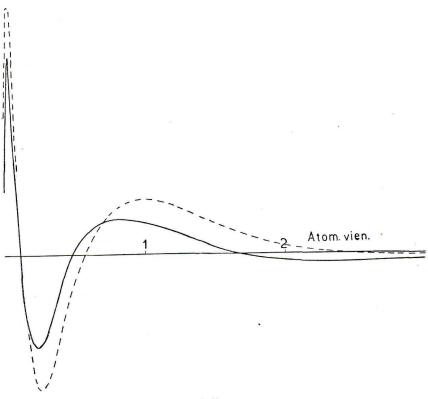
Šituo pamainų nariu (15) lygties integruoti negalima, nes sekantieji artutinumai neduoda bangos funkcijos, kuri nuosakiai artėtų į tikrąjį lygties sprendinį. Šitam nenormalumui prašalinti tenka vartoti Lagrange'o daugiklius. Jų vaidmuo yra patikrinti lygties sprendinio ortogonališkumą. Šiuo atveju sprendinys negali būti pilnai padarytas ortogonaliniu, nes iono elektronų bangų funkcijos, kaip jau minėta, nėra ortogonalinės. Pasirodo, kad by kokia P(4s/r) funkcija yra artimai ortogonalinė

¹³. Žiūr. pav. L. Brillouin. Les champs "self-consistents" de Hartree et de Fock. Paris, 1934.



1 fig

Žemiausia 4s-elektrono bangos funkcija metališkame kalyje. — — pirmajame, — - — antrajame ir — trečiajame artutinume.
The lowest 4s-electron wave function in metallic potassium. — — in first, — - — in second and — in third approximation. su P(1s/r) ir P(2s/r) funkcijomis, todėl teturint reikalo tik su radijine 4s-elektrono bangos funkcija, pakanka atsižvelgti tik į P(3s/r). Praktika parodė, jog (15) lygties sprendiniai konverguoja į tikrąjį sprendinį, kai P(4s/r) ir P(3s/r) pasiekia to paties ortogonališkumo laipsnio, kurio yra Hartree lygčių sprendiniai. Tam pakanka rasti tokius Lagrange'o daugiklius, kad



2 fig

Pamainų narys antrajame artutinume. The exchange term in second approximation — — — $\varepsilon_{154s} = \varepsilon_{234s} = \varepsilon_{354s} = 0; ---- \varepsilon_{154s} = 0,067, \varepsilon_{234s} = 0,164, \varepsilon_{354s} = 0,211$

pamainų narys G(r) ir jam atitinkamoji bangos funkcija prie tų pačių r keistų ženklus. Tokiu būdu pataisytą pamainų narį G(r) vaizduoja 2 fig. ištisoji kreivė.

(15) lygtis su $G(r) \neq 0$ integruota reikalaujant, kad pradžios K būtų lygus apskaičiuotam K. Tam patogiausia yra iš pradžių lygtį suintegruoti dviem skirtingom K reikšmėm ir tuomet, tiesiškai interpoliuojant ar ekstrapoliuojant, gauti artimesnę K reikšmę. O toliau jau tikrąją K reikšmę galima surasti sekant skirtumus tarp paimtos ir gautos K reikšmės. Tai padaryta 0.2% tikslumu. Šito integravimo rezultate gautą energijos kreivę vaizduoja 3 fig. II kreivė. Žemiausiai energijai E=-0.483Ry atitinkančią bangos funkciją vaizduoja 1 fig. nelygiųjų brūkšnių kreivė, kuri beveik sutampa su ištisąja kreive.

(15) lygtis trečiajame artutinume integruota taip pat, kaip ir antrajame. Atitinkamieji dydžiai yra surašyti 1-joje lentelėje. Joje matyti, kad ε_{3s4s} reikšmė labai skiriasi nuo jo reikšmės antrajame artutinume. Šita reikšmė priklauso nuo

$$\int_{0}^{1_{s}} P(3s/r) P(4s/r) dr$$

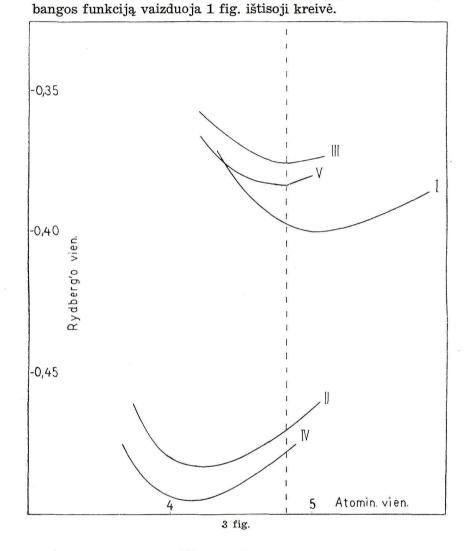
didumo. Tai aišku turint galvoje Lagrange'o daugiklių vaidmenį. Kaip iš skaičiavimų matyti, sekančiųjų artutinumų Lagrange'o daugikliai būtų visai artimi jų reikšmėms trečiajame artutinume neišskiriant nė ε_{3s4s}

	1 / 1.
- A.	lentelė
	IUIIUUIU

Table I.

Artutinumai Approximations	1-masis 1st.	2-rasis 2nd.	3-čiasis 3rd.
$\int_{0}^{r_{s}} P(ts/r) P(4s/r) dr$	+ 0,001	+0,000₅	+ 0,0 0 0 ₆
$\int_{\circ}^{r_{s}} P(2s/r) P(4s/r) dr$	+ 0,006	— 0,001 ₆	0,00 2 4
$\int_{o}^{r_{s}} P(3s/r) P(4s/r) dr$	+ 0,085	0,009	0,011
£ 1s4s		+ 0,067	+0,079
£ 2s4s		+0,164	+0,143
£ 3s4s		+0,211	+ 0,060
۲ _s	5,0	4,2	4,15
K	11,06	9,52	9,10
E	— 0,396	— 0,483	— 0,495

Trečiojo artutinumo energijos kreivę vaizduoja 3 fig. IV kreivė. Žemiausia energija E = -0.495Ry, o jai atitinkančią



4s-elektrono energija metališkame kalyje, kaipo r funkcija. I, II ir IV, žemiausia energija 1-jame, 2-jame ir 3-jame artutinumuose. III ir V, vidu-

tine energija Fermi pasidalinime 2-jame ir 3-jame artutinumuose. The energy of the 4s-electron in metallic potassium as a function of $r_{s.}$ I, II and IV, the energy of the lowest state in 1st, 2nd and 3rd approximations. III and V, mean energy in the Fermi distribution in 2nd and 3rd approximations. Kaip iš 1 fig. matyti bangų funkcijos 2-jame ir 3-jame artutinumuose beveik visai sutampa. Tų pačių artutinumų energijų kreivės, kaip matyti iš 3 fig., truputį daugiau skiriasi. Tačiau, palyginus su atitinkamų kreivių skirtumu 1-jame ir 2-jame artutinumuose, tenka pasakyti, kad šitas skirtumas yra pamažėjęs santykiu 7:1. Iš to viso galima daryti išvadą, kad ketvirtojo artutinumo rezultatai visai nežymiai skirtųsi nuo trečiojo artutinumo rezultatų. Todėl trečiasis artutinumas galima skaityti galutiniu.

3 §. Rezultatų diskusija.

3 fig. IV kreivė vaizduoja žemiausio elektroninio būvio energiją. Norint rasti tikrąją elektrono energiją, reikia prie žemiausios jo energijos pridėti kinetinę transliacijos energiją. Metališkojo ryšio energijai apskaičiuoti svarbiausia yra rasti vidutinę visų elektronų energiją. Visai laisvų elektronų vidutinę kinetinę energiją duoda Sommerfeld'o formulė:

$$\mathrm{F} = \frac{3\mathrm{h}^2}{10\mathrm{m}} \left(\frac{3\mathrm{n}}{8\pi}\right)^{\frac{2}{3}}$$

Čia h yra Planck'o konstanta, m — elektrono masė, n — vieno kūbinio centimetro laisvų elektronų skaičius. F yra vidutinė elektronų kinetinė energija prie absoliutinio temperatūros nulio ir vadinasi Fermi energija.

Remdamiesi Wigner'o ir Seitz'o² ir Fuchs'o⁵ (l. c.) darbais galime Sommerfeld'o formulę taikinti šarminių metalų metališko būvio vidutinei elektronų tranliacijos energijai. Šiuo atveju n galima pakeisti per 1 : V, kur V yra atominis tūris. V paėmę iš (2), į (19) įstatę konstantų reikšmes ir F išreiškę Rydberg'o vienetais gauname:

(20)
$$F = \frac{2,21}{r_s^2}$$

E+F duoda vidutinę elektronų energiją Fermi pasidalinime. Ją vaizduoja 3 fig. V kreivė. Jos minimumas yra prie E+F=-0,383Ry ir r_s=4,82 at. v. Prie šitos mažiausios energijos pridėję laisvo kalio atomo ionizinimo energiją I=4,32 voltų = 0,319Ry, gausime -0,064Ry. Tai reiškia, kad metališkojo ryšio energija yra $0,064 \text{Ry} = 19,9 \frac{\text{kgcal}}{\text{mol}}$. Nuo r_s pereinama prie gardelio konstantos a pagal formulę;

$$(21) a = 2 \sqrt{\frac{\pi}{3}} r_s$$

Gauname a = 9,79 at. v. = 5,17Å. Šitų rezultatų palyginimas su eksperimentiniais duomenimis duotas 2-joje lentelėje.

2	lentelė	
10	LUALUULU	

Table II.

Artutinumai Approximations	2-asis 2nd	3-čiasis 3rd	lš eksperimentų Experimental
Gardelio konstanta Å Lattice constant in Å	5,18	5,17	5,15—5,30
Sublimacijos šilima kgcal/mol Heat of vaporization in kgcal/mol	17,4	19,9	21,9—26,5

Joje duoti taip pat galutiniai rezultatai, gautieji iš antrojo artutinumo II ir III 3 fig. kreivių. Turint galvoje, kad skirtumai tarp atskirų artutinumų mažėja maždaug santykiu 7:1, galima daryti išvadą, jog ketvirtasis artutinumas metališkojo ryšio energiją arba sublimacijos šilimą padidintų nedaugiau kaip 0,4

Kadangi visi skaičiavimai atitinka absoliutiniam temperatūros nuliui, tai ir 2-joje lentelėje paduodamieji eksperimentiniai duomenys yra ekstrapoliuoti į absoliutinį temperatūros nulį.

E. Gorin'as⁶ (l. c.) gavo a = 5,80A ir sublimacijos šilimą 20,4 $\frac{\text{kgcal}}{\text{mol}}$. Kaip matyti, gardelio konstanta šiame darbe gauta žymiai geresnė. Tačiau sublimacijos šilima, priešingai, gauta truputį blogesnė. Šiame darbe gautoji sublimacijos šilimai reikšmė reikalauja kai kurių pataisų, bet šitos pataisos neišvengiamų klaidų ribose kompensuoja viena kitą (Žiūr. pav. Wigner ir Seitz² ir Fuchs⁵) ir galutino rezultato žymiai nekeičia.

Iš V 3 fig. kreivės minimumo taško galima dar apskaičiuoti spudumo koeficientą. Šitos kreivės minimumo taške kreivumas pareina tik nuo Fermi energijos, nes IV kreivė toje vietoje yra visai artima tiesiajai linijai. Todėl (Fuchs'as⁵): -114 -

(22)
$$k = \frac{8\pi^2 m}{h^2} 2,483 r_s 5.$$

Apskaičiavę gaunam k = 51.10⁻⁶ $\frac{\text{cm}^2}{\text{kg}}$. Tai yra apie du kartu daugiau, negu eksperimentiniai duomenys reikalauja. Tačiau spudumas yra elastinė metalų konstanta ir, kaip Fuchs'as¹⁴ irodo, ji apskaičiuojant turi būti atsižvelgta į veiksnius, kurie neturi itakos i kohezinių jėgų dydį.

SANTRAUKA.

Fock'o lygtis suintegruota metališkam kaliui iki trečiojo artutinumo. Gauta gardelio konstanta 5,17A ir sublimacijos šilima 19,9 $\frac{\text{kgcal}}{\text{mol}}$.

Fizikos Katedros Vedėjui Prof. Ig. Končiui, tvarkiusiam katedrai skiriamas kuklias lėšas taip, kad šitas darbas galėjo būti atliktas, nuoširdžiai dėkoju.

> V. D. U-to Fizikos Laboratorija Kaunas. 1938-I-8 d.

ON THE METALLIC POTASSIUM.

Summary.

The solution of Fok's equation of the valence electron was carried out to third approximation, with the boundary condition (1). The Hartree field was used. Before calculating the exchange term the wave functions were not orthogonalized. The Lagrange's non-diagonal factors were used with purpose that the exchange term together with its corresponding wave function, would change their signs simultaneously. Following that, in the next approximations the Lagrange's factors, energy pa-

14 K. Fuchs. Proc. Roy. Soc. A, 153, 622, 1936.

rameter, and wave function appeared to tend toward constant final values.

The results are given in the table II. The heat of vaporization is calculated as - (E+F+I), E being the energy parameter of Fock's equation, F — Fermi energy for free electron and I — ionization energy of the free potassium atome. No other corrections have been introduced.

I should like to express my cordial thanks to Professor Ig. Končius, the head of the Departament f Physics, for his care in affording me the conditions in which this study could be carried through.

> Physical Laboratory of the University of Vytautas the Great in Kaunas (Lithuania). January 1938.